
ADA Report

Class No: ENG2002_20211_E

Team No: 10

Group Member:

Fan Zhendi(20101448d), Hao Jiadong(20084595d), Huang Yufeng(20074902d)

Task No: 0

Abstract

In this assignment, our group is asked to build a class that could represent the complex

number and do the addition operation between two complex numbers. A program that lets

the user login and another function that could show the main menu are also needed in the

whole program. Additionally, we have realized the function which could compute the square

root of the complex number in the class.

Introduction

In detail, our group‘s tasks could be divided below:

For the class construction:

1. Build a class named “complexNum”, which could represent a complex number (x + yi),

where x and y are parameters in double type.

2. Within the defined class, we are told to use a private member variable “errNumber” to

check whether the operand is non-zero or not. In the constructor, “errNumber” is set to

be false. When the function “addition” is executed, it first checks whether the operand is

no-zero, and if so, the “errNumber” will be set to true instead of doing the operation.

3. For other member functions, we should realize the addition operation between two

complex numbers, the function that could get the square root of a complex number (for

those two functions we decide to assign a new double value as the final output) and so

on.

For the user login interface:

4. We should write a function which will let the user login. In this program, there are totally

2 situations:

1. The username is new. In this case, the program will ask for a password, then store the

username-password pair into a file. After that, the user will get into the main program.

2. The username is in the file. Then the user will be given three chances to enter the

correct password. If the user enters the correct password within 3 times, it will get

into the main program. If the user can’t enter the correct password within 3 times, the

whole program will end.

For the menu and main program:

5. A function that could display a menu which includes all the choices. Here we have 5

choices:

a. Input two complex numbers.

b. Display the two complex numbers you input.

c. Do the addition.

d. Compute the square root.

q. End the program.

6. A main function will call the login and menu functions.

Methodology

1. Work division

Fan Zhendi Hao Jiadong Huang Yufeng

Build the class

“complexNum” and realize

all of its member functions.

Give the header file and

library for final use.

Create the user login

interface including

username-password

verification and realize

different possibilities.

Make the menu for user to

choose and write the main

function. Testing and

debugging.

2. Schedule and steps of developing the project

Date Progress

Nov.15 Discuss together and divide the task

Nov.16--18 Complete individual parts

Nov.19--20 Integrate all parts together and

debugging.

Nov.21-27 Writing report.

3. The details of the developed application

Our application is divided into two parts. The static lib contains the class named

complexNum. The main program contains function menu(), login(), and main(). This part

is to show the specifications of the class defined, and the public/private member

functions/variables inside class or the main program. Then explain as far as possible why

our group makes such choices for coding.

(1). Detail of class complexNum:

A. Features:

i. Initialize the members when the object is created

ii. Store new complex number and operand

iii. Show the values of complex number and operand

iv. Add complex number and operand together

v. Show the square roots of the complex number

vi. Show a complex number in an appropriate format

B. Specifications:

i. Code:

C. Detailed explanation:

Private member variables:

The variable x of type double is used to store the real part of the complex number.

The variable y of type double is used to store the imaginary part of the complex

number.

The variable errNumber of type bool is used to check whether the operand for the

addition is non-zero. If the operand is 0+0i, errNumber will be set to true indicating

that this complex number pair can’t do the addition. Notice that only the first operand’s

errNumber will be set to true to indicate this complex number pair can’t do the addition.

For example, if the input complex number pair is 2+3i and 5+7i, only the errNumber of

2+3i will be set to true. Then the program will prompt the user to input another pair of

complex numbers to do the addition.

Public member functions:

i.complexNum():

code:

Explanation:

Called when the object is created, which is for initializing the values of the object.

ii. complexNum addition(complexNum):

code:

Explanation:

This function is used to pass in the operand and add the complexNum and operand

together. If the comlplexNum passed in is (0+0i), set errNumber to true instead of

doing the addition. Then return a blank complexNum. If the complexNum is not

(0+0i), which is a reasonable operand, do the addition and store the answer in

comlexNum outcome. Then return the outcome.

This determination for passed in complexNum is for helping users know if their

input is wrong and remind them to enter the right value.

iii. bool read_errNumber():

Code:

Explanation:

If this function is called, return the value of errNumber. errNumber is variable to

determine whether the operand for this complex number is non-zero.

iv. double get_x() and double get_y():

Code:

Explanation:

When one of both functions is called, return the real part number or imaginary part

number in double type respectively.

v. void set_x(double a) and void set_y(double a):

Code:

Explanation:

When one of both function is called and passed in a double number. Set real part

number or imaginary part number to the passed in value respectively. Reset

errNumber to false(Accurate judgment will be implemented in addition function).

vi. bool read_errNumber():

Code:

Explanation:

When this function is called, return the square root of corresponding object.

According to the equation to calculate :

We can set double xx = sqrt((x + sqrt(x * x + y * y)) / 2). Where xx is stand for

According to the equation to calculate :

double yy = sqrt((-x + sqrt(x * x + y * y)) / 2) * sgn. Where yy is stand for .

Here sgn is stand for sgn(y), which si the signum function defined as follows,

We use following codes to determine the value of sgn,

After calculation, define a new complexNum object named sq_result, set its value

to our calculation result. Then return one of the square roots in complexNum type.

vii. void complexNum::show():

Code:

Explanation:

When this function is called, show the value of complexNum in format of a+bi or

a-bi (depend on whether b is less than 0).

When y < 0, we don’t need to add a minus sign because it already has one.

When y >= 0, we add a plus sign to show the imaginary part is non-negative.

(2). Detail of function bool menu():

A. Features:

 i. Show the interface to ask user to enter a character to determine which

function should be used.

 ii. If user’s input is a, ask user to input new complex number and operand.

 iii. If user’s input is b, show the two complex numbers.

 iv. If user’s input is c, do addition and show the result.

 v. If user’s input is d, output two square roots of the first complex number.

 vi. If user’s input is q, return true to end the program

 vii. If user’s input is invalid, show messages to remind user to enter valid

character.

B. Details of the function:

 i. For feature i:

Code:

Explanation:

Define character choice to store the input character. Then show the messages

for user to make choices. After user determine which function they will use and

enter the corresponding character, store it to choose.

ii. For feature ii:

Code:

Explanation:

Apply switch statement to tell which choice have been made by user.

In case a, set values for num1 (stand for the first complex number) and num2

(stand for the operand). Then break to show the menu loop again.

iii. For feature iii:

Code:

Explanation:

In case b, show values of num1 (stand for the first complex number) and num2

(stand for the operand). Then break to start over the menu loop.

iv. For feature iv:

Code:

Explanation:

In case c, call the addition function of num1 with passing num2 in, return the

result to complexNum result. If the operand = 0+0i, we consider this addition is

invalid and show the error message and break to start over the menu loop.

Otherwise, the result will show correctly and break to start over the menu loop.

v. For feature v:

Code:

Explanation:

In case d, call the square_root function of num1, return the result to

complexNum result. Then show the result, which is one of the square roots of first

complex number. After that invert the real part number and imaginary part number

of result using set_x and set_y, show the result again. This is the other square root

of first complex number. Finally break to start over the loop.

vi. For feature vi:

Code:

Explanation:

In case q, show the message to say “Goodbye!” to user. Return true to end the

loop.

vii. For feature vii:

Code:

Explanation:

If there is no case match with the ‘choice’, show an error message and return

false to start over the loop.

(3). Detail of function bool login():

A. Features:

 i. Ask user to enter a username and determine whether this username has been

already registered.

 ii. If username has been registered, ask user enter password to login. If the

password is entered wrong for three times, end the program.

 iii. If username is new one, ask user enter password to register.

B. Details of the function:

 i. For feature i:

 Code:

 Explanation: This part is to compare the input username with saved username.

If they are not same, set exist to false. (More information can be found in comments)

ii. For feature ii:

Code:

Explanation: This part is to ask the user to enter the password that matchs the

username. If the password is right, return true and show the success message to

user. If the password is wrong, ask for another input. If the password is wrong for 3

times, end the program. (More information can be found in comments)

iii. For feature iii:

Code:

Explanation: If the username is not registered, ask for a new password. Then

store the password to user file. Add ‘ ‘ between username and password to separate

them for further use.

(4). Detail of function int main():

A. Features: Start the whole program and implement loop.

B. Code:

C. Explanation: Start login then start menu loop (More information can be found in

comments).

(5). The flow of execution:

4. The problems encountered and corresponding solutions

The first problem we encountered is about the menu function when we did the switch

case statements. At the beginning, we mistakenly initialized some values in the “case”

statements, the result is that we can’t run the program successfully:

By debugging, we found that the error was about the position where we initialized the

value. After some attempts, we recalled the truth that we can’t do initialization within any

“case”. Therefore, we just put the two statements outside and then solved the problem.

The second problem we met is when we wanted to show the complex numbers that we

input. At first, we didn’t build a “.show()” function. We just write “num1” to show the first

complex number we entered. However, when the imaginary part is a negative number,

the output is something like ”7+-9i”. To solve this, we create a “.show()” function. In this

function, we use an if statement to distinguish two different cases. Here is the detail:

The third problem we have encountered is about the login function. When we wanted to

compare the username that user entered with the username that is already in the text file

which stores the username-password, we didn’t care about the length of the input name

at first. However, a problem happened. When we enter “abcd” and there was only

username “abc” in the text file, the program will think there is an account in the file. That

is because we read the name character by character and the first 3 characters “abc” are

the same. Then the program just thought the username had already existed. To solve this,

we divide the comparison into two parts: First, we check if there is a username having the

same length as the username that user inputs. Then we check the username character by

character and get the comparison result. By comparing the length first, we ensured that

the wrong situation before would not happen and solved the problem.

5. Verification of our application:

A. Verification of login function:

register:

login:

fails to provide the correct password in three consecutive trials:

B. Verification of function of entering and displaying two complex numbers.

C. Verification of adding two complex number:

D. Verification of calculating square root:

E. Verification of quit function:

After completing all the verifications as above, we can confirm that our program is

working properly.

Results

The situation that the user login and runs the program successfully (username: a/password:

a):

The situation that the username doesn’t exist and the program just create one for the user

(username: b/password: b):

The situation that the user tries the password three times and failed:

The situation that the operand is zero when doing the addition:

The situation that the first input complex number is zero but it doesn’t influence the result:

The situation that the user enters invalid choice:

Conclusion and further development

In this project, we have realized the operation of addition and getting square root of complex

number. Besides, we have completed the function that could show the main menu and the

function that could let the user login.

The first experience we get, which is also the most meaningful experience, is that code

programming can really realize by a team. Although in the class, we learned that a huge

project programming could be completed by a team. However, before this project, what we

have experienced is working and solving all kinds of problems met in the programming just

by one person. In this project, we have someone to write the class and its member function,

a person who is responsible for finishing the user login interface and another one who writes

the menu and the main function that will call all the functions above. Our team cooperate

and work hard with each other in the whole process. We face all the troubles together and

really work as a team. This experience is what we think the most meaningful and important.

Another experience we get from the assignment is “Be patient and keep trying in the

programming”. As the professor told us when teaching run-time error and compile-time error,

at most of time, we can’t write the whole program once and run it successfully, there must be

some errors. What we should do is being patient and solve the problem one by one. When

necessary, asking for other’s help is also important.

As for the further development, the first thing we think is about the user login interface. In

our program, basically, the username can only be a consecutive string because we use a space

to set boundary between a username and a password, which means there can’t be any space.

However, in the real world, it is possible that user wants to add some spaces in his/her name,

like “Chan Daming”. If so, we should improve our program to make it could read username

including any number of spaces.

Another improvement we think is for the addition operation. In our program, we could only

do addition between two complex numbers. However, the user may want to do addition

among 3 or more complex numbers. To achieve this, we think there could be some

improvement in the addition member function in the class.

Also, for getting the square root, we could only get the square root of the first complex

number input. We think we could let the user choose which square root he/she wants to get,

the first complex number or the second.

The last improvement is about when the program prompts the user to input a character for

his choice, if the user input a string, the program may get into a dead loop. Although the

input is not allowed, we are worried about the user wrongly input a string and cause the

trouble. If we have time, we think we can solve this problem by other input methods other

than cin.

In conclusion, we have learned many things from this assignment and gained lots of useful

experience. And we also become more interesting in the field of computer programming.

